Date

Chapter 6 Chemical Reactions • Section 3 Summary

Controlling Chemical Reactions

Key Concepts

- How is activation energy related to chemical reactions?
- What factors affect the rate of a chemical reaction?

Activation energy is the minimum amount of energy needed to start a chemical reaction. All chemical reactions require a certain amount of activation energy to get started. Whether or not a reaction needs still more energy from the environment to keep going depends on whether it is exothermic or endothermic. At the end of an exothermic reaction, the products have less energy than the reactants. This difference results in the release of heat. Endothermic reactions need energy to keep going. The energy of their products is higher than that of their reactants.

Chemical reactions don't all occur at the same rate. How fast a reaction happens depends on how often and with how much energy the particles of the reactants come together. Factors that affect rates of reaction include surface area, temperature, concentration, and the presence of catalysts and inhibitors.

When a solid reacts with a liquid or a gas, only the particles on the surface of the solid come in contact with the other reactant. To increase the rate of reaction, you can break the solid into smaller pieces that have more surface area. More material is exposed, so the reaction happens faster.

Another way to increase the rate of a reaction is to increase its temperature. When you heat a substance, its particles move faster. Fastermoving particles come into contact more often, which means there are more chances for a reaction to happen. Faster-moving particles also have more energy. This increased energy helps the reactants get over the activation energy "hump."

A third way to increase the rate of a reaction is to increase the concentration of the reactants. **Concentration** is the amount of a substance in a given volume. Increasing the concentration of reactants supplies more particles to react.

Another way to control the rate of a reaction is to change the activation energy needed. If you decrease the activation energy, the reaction happens faster. A **catalyst** is a material that increases the rate of a reaction by lowering the activation energy. Catalysts affect the reaction rate, but they are not considered reactants. The cells in your body contain biological catalysts, called **enzymes.** Enzymes increase the reaction rates of chemical reactions necessary for life.

Sometimes a reaction is more useful when it can be slowed down rather than speeded up. A material used to decrease the rate of a reaction is called an **inhibitor**. Most inhibitors work by preventing reactants from coming together. Name_

Date_

Chemical Reactions • Reading/Notetaking Guide

Controlling Chemical Reactions (pp. 234–239)

This section explains what all chemical reactions require to get started. It also describes how the rates of chemical reactions can be controlled.

Use Target Reading Skills

Fill in the graphic organizer as you read. Under "Notes," write key ideas, using phrases and abbreviations. Include a few important details. Under "Recall Clues and Questions," write study questions that your notes help you answer.

Controlling Chemical Reactions				
Recall Clues and Questions	Notes			

Nar	ne	Date	Class
Che	emical Reactions	 Reading/Notetaking Guide 	
End	ergy and Reactio	>ns (pp. 235–236)	
1.	The needed to start a ch	is the minimum a nemical reaction.	mount of energy
2.	Is the following set certain amount of a	ntence true or false? All chemic activation energy to get started.	al reactions need a
3.	In a reaction that n where does the act	nakes water from hydrogen gas ivation energy come from?	and oxygen gas,
-	A reaction that rele	ases energy is called a(n)	
5.	A reaction that abso	orbs energy is called a(n)	·
6.	Why does an exoth	ermic reaction need activation	energy?
-			
-			
-	On the second 1 - 1		
7.	On the graph below	v, now does the energy of the pr	oducts compare with the energy

7 of the reactants?

- **8.** Label the graph above as either an exothermic or endothermic reaction.
- 9. What part of the graph in question 7 represents the activation energy for the reaction?

Naı	ne		Date	Clas	SS
Che	emical Reactions	Reading/No	otetaking Gui	de	
Co	ntrolling Chem	nical React	tions (contin	ued)	
Rat	tes of Chemical I	leactions (p	op. 237–239)		
10.	What are five factor	s that affect th	ne rate of a cho	emical reaction?	
-					
- 11.	Why does surface a	rea of a reacta	int influence t	he rate of the reaction	on?
-					
- 12.	In what way is tem	perature relate	ed to chemical	reaction rates?	
-					
13.	Circle the letter of e a. Add heat. c. Increase the surfa	ach of the foll ace area.	owing that we b. Decrea d. Reduce	ould increase the ra se the surface area. heat.	te of a reaction.
14.	The amount of subs	stance in a giv	en volume is o	called	
15.	To increase the rate concentration of the	of a reaction, reactants?	why would y	ou increase the	
-					
- 16.	Is the following sen of a reaction is to ch	tence true or f ange the activ	false? Another vation energy	way to control the needed.	rate
17.	What is a catalyst?				
-					
-					
18.	Is the following sent changed in a reaction	ence true or fa	ilse? Catalysts	are always perman 	ently
19.	A biological catalys	t is called a(n)	l	·	

Nai	ne Date Class	_
Che	emical Reactions • Reading/Notetaking Guide	
20.	Why must living things rely on thousands of catalysts for chemical reactions necessary for life?	_
-		-
21.	What is an inhibitor?	_
- 22.	How do most inhibitors work?	_
-		-