Forces • Reading/Notetaking Guide

Newton's Third Law (pp. 393-399)

This section explains Newton's third law of motion. It also explains a law about moving objects.

Use Target Reading Skills

As you read, fill in the notetaking graphic organizer. Under "Notes," write key ideas, using phrases and abbreviations. Include a few important details. Use your notes to write a summary statement for each red heading. Under "Recall Clues and Questions," write study questions that your notes help you answer. Some notes for the first red heading are provided.

Recall Clues and Questions	Notes
What is Newton's Third Law of Motion?	IF one object exerts a force on another object THEN Example: <u>Summary Statement:</u>

Newton's Third Law

Forces • Reading/Notetaking Guide

Newton's Third Law (continued)

Newton's Third Law of Motion (pp. 393–395)

1. What is Newton's third law of motion?

- 2. What is the name often given to the force exerted by the first object on a second object? _____
- 3. What is the name often given to the force exerted by the second object back on the first object? _____
- 4. The action and reaction forces in any situation will always be _____ and _____.
- 5. Explain why the equal action and reaction forces do not cancel each other when one person hits a ball.

Momentum (pp. 396–397)

_____.

- 6. The product of an object's mass and velocity is its
- 7. What is the equation you use to determine the momentum of an object?
- 8. What is the unit of measurement for momentum?

Conservation of Momentum (pp. 397–399)

9. What does the law of conservation of momentum state?

Name

Date_____

Forces • Reading/Notetaking Guide

10. Suppose a train car moving down a track at 10 m/s collides with another train car that is not moving. Explain how momentum is conserved after the collision.