Date

Chapter 1 Introduction to Physical Science • Section 2 Summary

Scientific Inquiry

Key Concepts

- How do scientists investigate the natural world?
- What role do models, laws, and theories play in science?

Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on evidence they gather. The processes that scientists use in inquiry include posing questions, developing hypotheses, designing experiments, collecting and interpreting data, drawing conclusions, and communicating ideas and results.

Scientific inquiry often begins with a problem or questions about an observation. A scientific question is one that can be answered by making observations and gathering evidence. A **hypothesis** is a possible explanation for a set of observations or answer to a scientific question. In science, a hypothesis must be testable.

Any factor that can be measured in an experiment is called a **parameter**. The variable that is purposely changed to test a hypothesis is called the **manipulated variable**. The factor that is expected to change in response to the manipulated variable is called the **responding variable**. All other variables should be held constant. An experiment in which only one variable is manipulated at a time is called a **controlled experiment**.

A controlled experiment produces data. **Data** are facts, figures, and other evidence gathered through observations. A data table provides an organized way to collect and record observations. One useful tool in interpreting data is a graph. Graphs can reveal trends or patterns in the data. After gathering and interpreting data, a scientist draws conclusions about the hypothesis.

An important part of the scientific inquiry process is communicating the results. **Communicating** is the sharing of ideas and experimental findings with others through writing and speaking.

Scientists use models and develop laws and theories to increase people's understanding of the natural world. A model is a picture, diagram, computer image, or other representation of an object or process. A scientific theory is a well-tested explanation for a wide range of observations or experimental results. A scientific law is a statement that describes what scientists expect to happen every time under a particular set of conditions. A scientific law describes an observed pattern in nature without attempting to explain it. Sometimes, a large set of related observations can be connected by a single explanation. Name

Date

Introduction to Physical Science • Reading/Notetaking Guide

Scientific Inquiry (pp. 10–15)

This section explains the process of scientific inquiry and describes what makes an explanation called a hypothesis testable. It also explains the difference between a scientific theory and a scientific law.

Use Target Reading Skills

After you read this section, reread the paragraphs that contain the definitions of the Key Terms. Use all the information you have learned to write a definition of each Key Term in your own words on the lines below.

scientific inquiry

hypothesis	
parameter	
manipulated variable	
responding variable	
controlled experiment	
data	
communicating	
model	

Name		Date	Class			
Introduction to Physical Science • Reading/Notetaking Guide						
Scientific Inquiry (continued	d)					
scientific theory						
scientific law						
Introduction (p. 10)						
1. What does scientific inquiry re	efer	to?				

The Process of Inquiry (pp. 10–14)

- 2. Is the following sentence true or false? Scientific inquiry often begins with posing questions. ______
- **3.** Circle the letter of each sentence that is a scientific question.
 - **a.** At what temperature does water boil?
 - **b.** When does the sun rise on April 3?
 - **c.** How can my team work better together?
 - d. Why does she like science more than he does?
- **4.** A(n) ______ is a possible explanation for a set of observations or answer to a scientific question.
- **5.** Is the following sentence true or false? Scientists consider a hypothesis to be a fact. ______
- **6.** What is a testable hypothesis?

		_ Da	te	Class		
Introductio	n to Physical Science	Re	ading/Notetaki	ng Guide		
7. To test a	a hypothesis, a scientist o	desigi	ns a(n)			
Match the te	rm with its definition.					
8. r	esponding variable	a.	the one variable changed to test	le that is purposely t a hypothesis		
9. n	nanipulated variable	b.	a factor that ca experiment	n be measured in an		
10. c	ontrolled experiment	c.	the factor that response to the	may be measured in e manipulated variable		
11. p	parameter	d.	an experiment variable is mar	in which only one nipulated at a time		
12. Is the for in an explain	ollowing sentence true of periment, there will be i s your results	r false no wa	e? If you do not ay to know whic	control variables h variable		
13. The factor are called	ts, figures, and other evided	dence	e gathered throu	igh observations		
14. In carry	ing out a controlled expe	erimei	nt, what does a c	lata table help you do?		
15. Scientis to share	ts generally use a systen quantitative data.	n of m	neasument calle	d		
16. Circle t	• Circle the letter of each sentence that is true about graphs.					
a. Agr b. Grap c. Grap d. Agr	aph can reveal a trend ir ohs help scientists interp ohs are the only way to c aph can reveal a pattern	n data ret da organi in da	ata. ize data. ta.			
	is a sum	mary	y of what you ha	ve learned from an		
17. $A(n) = \frac{1}{2}$	ient.					
experin	11 1 10	1		1		

